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ABSTRACT Rest tremor is a most common symptom of Parkinson’s Disease (PD), with diagnosis and
severity estimation often being hindered by subjectivity and limitations of existing methods. Additionally,
treatment strategies for PD face challenges in monitoring symptom fluctuations with clinical methods, like
theMDS-UPDRS andmotor diaries, suffering from subjectivity, limited sensitivity, and infrequent sampling,
potentially impacting treatment effectiveness. Hence, methods that can yield explainable biomarkers that
accurately describe properties of PD rest tremor, while accounting for the presence of ongoing treatments,
such as Deep Brain Stimulation (DBS) and medication, are important for integration in accurate AI-powered
wearable systems. To that end, a Higher Order Spectrum (HOS)-based analysis to extract features from
index finger velocity recordings of 16 PD patients is proposed. Two different scenarios are implemented
for characterizing and classifying treatment (medication/DBS) effectiveness and tremor severity (Low-/
High-Amplitude (LAT/HAT)), by means of statistical tests and a leave-one-subject-out cross-validation
classification scheme, respectively. The proposed analysis resulted in area under the Receiver Operating
Characteristics curve (AUC) score of 0.94 for the Medication treatment classification, 0.71 for the DBS
treatment and 0.83 for LAT/HAT prediction. Our results demonstrate that the proposed approach can
effectively assess the influence of medication and DBS and recognize rest tremor severity. Finally,
our HOS-based methodology enables the establishment of new rest tremor classes, based on its
nonlinearity and allows for new insights about the dynamic nature of the resting tremor production
system.

INDEX TERMS Deep brain stimulation (DBS), higher order statistics/spectrum (HOS), machine learning,
medication, nonlinearity, Parkinsonian rest tremor.

I. INTRODUCTION
Parkinson’s Disease (PD) is a common progressive neu-
rodegenerative disorder that causes death of dopaminergic
neurons in the substantia nigra [1]. PD ismainly characterized
by motor symptoms, such as rest tremor, bradykinesia,
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muscle rigidity and postular instability, as well as non-motor
symptoms, such as cognitive impairments (e.g., demen-
tia), psychiatric disturbances and sleep dysfunction [1].
Individuals with PD, typically develop mild symptoms at
the beginning of the disease onset [2]. One of the most
common symptoms of PD is rest tremor and occurs when
the muscles are relaxed and still [3]. Another, less common
type of PD tremor is action tremor, which occurs with the
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voluntary movement of a muscle [4]. There are several
sub-classifications of action tremor, such as postural, kinetic
and isometric [5].

For alleviation of PD symptoms (e.g., rest tremor), medi-
cation treatments, such as L-Dopa (levodopa), are commonly
administered to patients [6]. In addition, individuals can take
advantage of advanced treatment methods such as Deep Brain
Stimulation (DBS) [7], to counterbalance the symptoms
that they experience when the effect of a medication dose
disappears [1]. DBS involves surgical placement of unilateral
or bilateral leads (wires) transcranially in the subthalamic
nucleus (STN) or the globus pallidus interna (GPi) [1], [7].

The treatment strategy design varies and depends on
symptom timelines and presentations. However, there are
challenges in monitoring symptom fluctuations over time.
On clinical settings, PD rest tremor is often classified based
on amplitude and frequency characteristics [8], as these
are depicted through the commonly used Movement Dis-
order Society-Unified Parkinson’s Disease Rating Scale
(MDS-UPDRS) [9], without the use of instruments. However,
such screening methods are often limited by subjectivity of
the expert or the subject’s answers [10]. Currently, motor
diaries are the standard for tracking changes outside the
clinic, but they have compliance issues, subjective errors, and
limited sensitivity [11]. Most importantly, such assessments
are a mere snapshot of the patient’s disease staging, in fact
sampled at a very low frequency [12]. As a result, the
treatment plan might not be effective enough, resulting in
insufficient symptom relief, or it could be overly aggressive,
leading to side effects.

Thus, technological interventions that provide more flex-
ible and accurate ways of evaluating rest tremor severity,
are of great importance in devising more efficient treatment
strategies and early diagnosis and prediction methods. Wear-
able ubiquitous sensing alleviates shortcomings of traditional
clinical evaluations as it fosters continuous and fine-grained
unobtrusive monitoring, hence enabling evaluation of the
patient’s real-time condition in the full spectrum of human
activity [13]. Consequently, technological advancements in
the field of wireless sensing have brought forth a booming
interest in artificial intelligence (AI) algorithms that can yield
insights based on the recorded data [14]. Although these
approaches maintain an efficient outlook in successfully and
ubiquitously monitoring PD patients, they are based on AI
methods, that lack explainability and a deeper understanding
of the inherent nature of the disease [14]. Reliable disease
biomarkers that can train these AI methods more efficiently
can solve one of the most critical open problems in PD
monitoring, that lays in characterization of PD across disease
staging, treatment conditions and different daily life and
activity contexts [14].

In this vein, our research aims to develop explainable
biomarkers that can effectively assess the nonlinear properties
of the tremor producing system, while being sensitive
to alternating treatment states. For that cause, our work

introduces the use of Higher-Order Statistics/Spectra (HOS),
a signal processing framework that is related to and can
be expressed in terms of the moments of a random
process [15]. One of the most commonly used members
of the Higher-Order Spectra family is the Third-Order
Spectrum, known as the Bispectrum (BS), which is defined
as the two-dimensional Fourier Transform (2D-FT) of the
third-order statistics [15]. HOS have found applications
in many scientific fields, especially in biological systems,
where nonlinearity is an inherent component of biological
mechanisms. To our knowledge, no other studies have used
HOS-related features for characterization and identification
of PD rest tremor. In this way, our work moves one step
further than the conventional approaches of amplitude and
frequency representations, delivering a new perspective of PD
rest tremor in terms of nonlinearity.

The analysis of our results indicates that our proposed
methodology holds potential in describing various important
aspects of PD rest tremor. The main contributions of our work
can be summarized as follows:

• The proposed methodology achieves high performance,
while maintaining a robust behavior across different
conditions, in recognizing the effect of medication and
DBS and classifying subjects to the HAT/LAT classes.

• In agreement with previous studies [8], [16], [17],
we also show that medication performs better than DBS
in suppressing tremor and that a tremor rebound occurs
15 minutes after DBS is switched off [8]. We also
observe a secondary rebound that was not reported in
[8], 60 minutes after DBS is switched off.

• We show that system-obtained information from HOS,
such as nonlinearity, provide a robust performance,
regardless of tremor severity.

• A precise description of the dynamical nature of
PD rest tremor using HOS is introduced, effectively
modeling the changes in tremor properties, caused by
the transitions into and out of the various DBS and
medication conditions.

• Finally, we propose a more efficient characterization
of PD resting tremor based on nonlinearity, rather
than amplitude- and frequency-based representations,
through a re-clustering of the HAT/LAT classes based
on HOS features.

The structure of the paper is organized as follows.
In Section II, related work on treatment effect and PD
tremor characterization and identification are presented. The
theoretical background and the proposed methodology are
presented in Section III. In Section IV, the employed dataset
is described along with the different analysis scenarios
used in performance evaluation. In Section V, the results
of the proposed analysis are described. In Section VI, the
results are discussed, along with implications and extensions
of our results, including a HOS-based clustering analysis
to further unveil a new perspective about PD rest tremor
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characterization; Section VI finalizes with the limitations of
our work. Finally, Section VII concludes the paper.

II. RELATED WORK
A. EFFECT OF DEEP BRAIN STIMULATION AND
MEDICATION ON PARKINSONIAN TREMOR
The significance of PD tremor-related biomarkers that can be
easily extracted using readily available commercial devices,
such as inertial measurement units (IMUs), has recently
been emphasized. These biomarkers have the potential to
facilitate the design of advanced and personalized treatment
strategies and the study of treatment effects on PD tremor
management. For instance, in [18], a closed-loopDBS control
system, capable of adjusting DBS settings by analyzing
simple tremor signals recorded from the patient’s index
finger was shown to outperform conventional non-adjustable
systems. Furthermore, in an endeavor to enhance levodopa
treatment for advanced PD, Teymourian et al. explored a
novel autonomous wearable system to medication delivery
and wearable symptom tracking [19]. Such a system could
enable real-time monitoring of levodopa levels, allowing for
personalized dosing adjustments in response to symptom
fluctuations.

To enhance DBS settings optimization, Gülke et al.
introduced a semi-automatic system, worn on patients’
fingers, combining IMU data and clinician assessments
[20]. Time and frequency-domain features were employed
to assess tremor severity. The results from ten PD patients
demonstrated significant symptom improvement, promising
advancements in closed-loop DBS optimization systems.
In another study by Heldman et al., a novel DBS pro-
gramming optimization method was introduced, utilizing a
motion device on the more affected hand’s index finger [21].
Similar to the previous approach, this device integrated IMU
sensors and conducted time and frequency-domain analyses.
The software systematically adjusted stimulation settings to
successfully minimize tremor and bradykinesia severity, side
effects, and battery usage. Moreover, Castaño et al. designed
a fine-motor-skills task to extract time-domain features
sensitive to DBS-induced changes in motor function when
switching between ‘‘On’’ and ‘‘Off’’ states [22]. The reported
results indicated sensitivity to motor function changes caused
by DBS alterations.

Smits et al. investigated the use of graphical tasks to assess
changes in upper limb function in response to dopaminergic
medication in PD patients [23]. Tremor fluctuations were
quantified using power spectral density features of IMU
data. Results demonstrated the validity of the proposed
approach and provided insights into medication response
and tremor reduction. In a study by Pulliam et al. [12],
the challenge of monitoring temporal patterns of symptoms
in PD patients in response to levodopa was addressed
through wearable IMUs placed on each wrist and each
ankle. Spectral power in frequencies typical of tremor, along
with multiple regression models, were used to quantify the
dose response of tremor, bradykinesia, and dyskinesia during

various activities. Results from 13 PD patients demonstrated
the potential of the proposed system for monitoring motor
fluctuations in daily life. In another study by Ricci et al. [24],
the objective assessment of levodopa treatment in PD patients
was enhanced by devising multiple motor tasks, each related
to different PD symptoms. IMUs were used to measure motor
tasks in 36 patients at therapy initiation, six months, and
twelve months. The power and amplitude of tremor within
the PD tremor frequency band were used to assess treatment
effects, yielding insights about the levodopa therapy.

Furthermore, certain studies have explored the combined
effects of DBS and medication. In a study by Beuter et al. [8],
the authors investigated the impact of DBS and medication
on PD rest tremor by analyzing IMU signals. While DBS
did not significantly affect patients under medication, it had
a notable impact on both the amplitude and frequency
characteristics of rest tremor when medication was not
administered. Additionally, Meka et al. recruited 27 PD
patients and evaluated their tremor levels across four different
states, which were combinations of the presence and absence
of DBS and medication [25]. IMU recordings from the
patients’ middle finger were used for tremor quantification,
and the area under the 3 to 7 Hz band was calculated and
compared within these four states. Results demonstrated that
while both DBS and medication were effective when used
individually, the most significant tremor reduction occurred
when both DBS and medication were combined.

B. PARKINSONIAN TREMOR CHARACTERIZATION AND
IDENTIFICATION FROM IMU DATA
Characterization and identification of PD tremor constitute
established research topics and hence, several studies have
explored PD tremor dynamics in order to create workflows
that can accurately characterize PD tremor instances. In this
vein, di Biase et al. effectively discriminated PD from
essential tremor in IMU data with robustness in transitions
across postures, by designing a ‘‘tremor stability index’’
through a logistic regression analysis that encompassed
frequency and amplitude characteristics [26]. Furthermore,
Hssayeni et al. used data from wrist- and ankle-mounted
IMUs from PD patients during daily life tasks in lab
settings [27]. Medication effect was incorporated in the
data collection protocol, which overall aimed to assess
the severity of PD tremor. By utilizing the gradient tree
boosting and long-short term memory (LSTM) models,
they successfully predicted the expert-assigned UPDRS-III
severity annotations [27].

The advent of wearable devices and the development of
AI, enabled the integration of wearable technology with algo-
rithms for on-the-edge computing. Pioneering approaches
emerged such as the one proposed by Patel et al., who
evaluated the severity of tremor and other motor symptoms
by means of IMUs mounted on the body [28]. They extracted
amplitude and frequency features and utilized support vector
machines to distinguish between different motor symptoms
and quantify their severity [28]. Furthermore, Chén et al.
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addressed identification and severity assessment of PD
through a multi-modal smartphone behavioral data approach
that included the modality of tremor [29]. Through a
custom-made ML model, they analyzed week-long data
obtained over a 6-month interval and identified disease
specific feature-profiles [29].

Other works have used deep learning models in an attempt
to address PD identification. Oktay and Kocer leveraged
an LSTM model to differentiate between PD and essential
tremor from resting and postural IMU data [30]. Similarly,
Sun et al. designed TremorSense, a framework for discerning
rest, postural and action PD tremors, through a convolutional
neural network (CNN) [31]. Papadopoulos et al. employed
expert-derived UPDRS tremor annotations from IMU data of
PD patients and healthy controls collected in-the-wild during
phonecalls, to design a hybrid multiple instance learning -
CNN model [32]. Later, the same group designed a novel
deep learning architecture to capitalize the information of
IMUs and touchscreen typing data towards identification
of PD symptoms including tremor in a PD and healthy
control cohort, collected during users’ regular interaction
with their smartphones [13]. Finally, in Lamprou et al.,
a previous work of ours, we have utilized the same in-the-
wild phonecall data as Papadopoulos et al. [32] to introduce
DeepBispecI, a comprehensive tremor detection framework
that outperformed other methods by means of HOS images
that were fed to a CNN [33].
Ultimately, our research is based on the PD rest tremor

dataset introduced by Beuter et al., that focuses in exploring
the effects of DBS and L-dopa medication through IMU data
from a velocity-transducing laser, aimed at the index finger
of each subject [8]. Works that utilized this dataset so far
used deep learning to predict different attack stimulations
in DBS [34], employed discrete non-Markovian stochastic
processes to study the Parkinsonian pathological tremor [16],
applied nonlinear analysis to characterize tremor properties
as chaotic or stochastic [35], or considered Long-Term
Correlations (LTC) andMultifractal (MF) properties to tackle
three different classification problems [17]. The Fast Fourier
Transform (FFT) [36] and the Power Spectrum (PS) [8] have
also been utilized to analyze tremor amplitude and frequency
characteristics of resting tremor signals.

To summarize, although the related work in the effects of
DBS and dopaminergic treatment, as well as in PD tremor
characterization from IMU data has progressed significantly,
the following gaps can be identified: (i) to the best of
our knowledge, biomarkers that describe tremor properties
and are correlated to disease severity, while accounting for
simultaneous presence of DBS and medication, do not exist
in the literature; (ii) amplitude, frequency and harmonic-
ity expressions of tremor hold clinical value, yet recent
research has proven that these properties are not sufficient
for describing the nature of PD tremor. More advanced
approaches such as the one by Sarbaz and Pourakbari [35],
contributed significant characterization insights but did not

yield biomarkers that can track dynamic fluctuations related
to treatment regimes.

Our proposed methodology is designed to address the
above significant gaps that exist in PD tremor identification
and characterization, by designing explainable nonlinear
biomarkers that are able to describe the tremor producing sys-
tem and track dynamic alterations that accompany treatment
regimes transitions.

III. METHODOLOGY
A. THEORETICAL BACKGROUND
HOS have some appealing properties and are appropriate for
the examination of complex nonlinear systems [15]. HOS
do not only reveal amplitude information about a random
process, but also reveal its phase information. This is of great
importance, since, as is well known, second-order statistics,
are phase-blind. By taking the multi-dimensional Fourier
Transform (FT) of cumulants, the space of higher-order
spectra is defined [15]. The most commonly used member
of the higher-order spectra family is BS [15]. When applied
to a random process that either is non-Gaussian or originates
from a nonlinear system, the BS is a powerful tool, because
unlike the PS, it can detect non-linear interactions, such as
quadratic phase coupling (QPC) [15].

The BS(f1, f2) of a random process {x(k)} can be defined
as:

BS(f1, f2) = E[X (f1)X (f2)X∗(f1 + f2)], (1)

where E[·] is the expectation value, X (f ) is the FT of the
random process {x(t)} at frequency f and X∗(f ) is its complex
conjugate [15].
The normalized Bispectrum or Bicoherence is defined as:

BIC(f1, f2) =
BS(f1, f2)

√
P(f1)P(f2)P(f1 + f2)

, (2)

where BS(f1, f2) is the bispectrum of the random process
{x(k)} at frequencies (f1, f2) and P(f ) is its power spectrum
at frequency f [15]. The magnitude of the bicoherence,
|BIC(f1, f2)|, is called the Bicoherence Index (BI) and takes
values between 0 and 1. BI quantifies the presence of QPC
between any two frequency components in a random process
due to their non-linear interactions. In particular, two periodic
components at frequency and phase pairs of (f1, φ1) and
(f2, φ2), respectively, exhibit QPC when there exists a third
periodic component at frequency and phase pair of (f3, φ3),
with its frequency and phase satisfying f3 = f1 + f2 and
φ3 = φ1 + φ2, respectively. Value of BI at (f1, f2) close to
1 translates into an almost perfect phase coupling, whereas
close to 0 denotes the absence of QPC [15].

B. PROPOSED METHODOLOGY
The proposed methodology, presented in Fig.1, aims to
extract HOS-based features that are able to accurately
discriminate between the HAT/LAT classes and capture
the effects of DBS and L-dopa medication. Furthermore,
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FIGURE 1. Flowchart of the proposed HOS-based methodology. Initially,
the accelerometer data undergo preprocessing. Following, the bispectrum
and the bicoherence are calculated and subjected to a feature extraction
pipeline, designed to capture tremor related information. Consequently,
two different scenarios are implemented for characterizing and classifying
treatment (medication/DBS) effectiveness and tremor severity (LAT/HAT).

a classification scheme is designed to test the efficiency of
the extracted features. Following, the feature extraction pro-
cedure and the adopted classification scheme, are presented.

1) FEATURE EXTRACTION
In order to classify rest tremor signals into the HAT/LAT
classes, different features that are drawn from the BS/BIC
domains are proposed. The motivation behind is to accurately
describe the morphology and the unique characteristics of
the tremor affected frequency bands, as represented in the
bispectral domain. For this purpose, different features are
designed, to account for the form, the amplitude, and the
distribution of bispectral content in the tremor affected
region. In Fig. 2, an example of the representation of the
acquired signals from subjects with LAT (Fig. 2-left panel)
and HAT (Fig. 2-right panel), at the PS, BS, and BIC domains
is presented. The noticeable morphological changes between
the two classes seen at these domains justify the selection of
the features described next.

• BS-based Features
1) Bispectral Entropy(BspecEnt1):

BspecEnt1 = −

∑
m

∑
n

pmnln(pmn), (3)

where

pmn =
|BS(fm, fn)|∑

fm∈L
∑

fn∈L |BS(fm, fn)|
(4)

and L denotes the BS region of interest and m,n =
1,2,. . . ,M , where M is the number of points in L.

2) Bispectral Squared-Entropy (BspecEnt2) at
[2.5-8]Hz:

BspecEnt2 = −

∑
m

∑
n

qmnln(qmn), (5)

FIGURE 2. Standard procedure starting from the preprocessed signal
(first row), to the PS (second row), to BS (third row) and BIC (fourth row)
for the s8 HAT subject in the ‘r15of’ condition (right panels) and the g13
LAT subject in the ‘r15of’ condition (left panels). It should be noted that in
the top panels the signals have been normalised.

where

qmn =
|BS(fm, fn)|2∑

fm∈L
∑

fn∈L |BS(fm, fn)|2
, (6)

and L denotes the BS region of interest and m,n =
1,2,. . . ,M , where M is the number of points in L.

3) Area of Dominant Peak (MaxArea): A measure
of the area around the dominant peak of the BS
domain. Area is measured in units of bi-frequency
bins, where one bi-frequency bin denotes the
unitary area.

4) Total Area (TotalArea): A measure of the total area
of the BS domain.

5) Number of BS Peaks (NoPeaks): Existence of
one or many dominant BS peaks; it takes only
binary values, that is, 1, if the BS has exactly one
dominant peak, and 0, otherwise.
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6) Ellipse Similarity Ratio (ESR): After the main
body of the BS content is located, an ellipse (E) is
fitted to the contour (C) of the BS content. Then,
the ratio of the intersection to the union of E and C
is estimated as follows:

ESR =
C ∩ E
C ∪ E

. (7)

ESR ranges from 0 to 1, with the value of
1 indicating a perfect elliptical shape of the BS
content.

The motivation behind the area- and shape-related
features is that HAT subjects tend to have a sharper
and more concentrated BS dominant peak (Fig. 2-right
panel). Thus, we expect that, as the tremor enters the
pathogenic region, the main peak will converge to
a Dirac delta function, maintaining an elliptic shape
as it shrinks. On the other hand, a more dispersed
BS content, indicates that tremor ‘escapes’ from a
pathogenic behavior and tends to become physiological.
In this way, more frequency components are present in
the signal, whereas the shape of the contour becomes
more andmore irregular (Fig. 2-left panel). These claims
also remain valid for the NoPeaks, BspecEnt1 and
BspecEnt2 features. In fact, a high entropy value
indicates a BS distribution that approximates a uniform
distribution, where randomness is maximized, whereas
a low entropy value indicates that the BS distribution has
a very concentrated form and approximates a Dirac delta
function where randomness is zero.

• BIC-based Features
1) BIC Entropy (BicEnt1):

BicEnt1 = −

∑
m

∑
n

pmnln(pmn), (8)

where

pmn =
|BIC(fm, fn)|∑

fm∈L
∑

fn∈L |BIC(fm, fn)|
, (9)

and L denotes the BIC region of interest and m,n =
1,2,. . . ,M , where M is the number of points in L.

2) BIC Squared-Entropy (BicEnt2):

BicEnt2 = −

∑
m

∑
n

qmnln(qmn), (10)

where

qmn =
|BIC(fm, fn)|2∑

fm∈L
∑

fn∈L |BIC(fm, fn)|2
, (11)

and L denotes the BIC region of interest and m,n =
1,2,. . . ,M , where M is the number of points in L.

3) Total BIC (TotalBic):

TotalBic =

∑
fm∈L

∑
fn∈L

|BIC(fm, fn)|, (12)

and L denotes the BIC region of interest.

In the examined problem, the selection of L =

[2.5 − 8]Hz region is mainly considered, as HAT/LAT
tremor activity that involves QPC interactions between
frequency pairs, is located at this area (Fig. 2-third row).
Moreover, in the case of HAT, the BS peak is even
limited within the [4-6]Hz region and has an elliptical
shape (Fig. 2-third row, right panel). On the contrary the
BS content of the LAT subject is dispersed and has an
irregular shape (Fig. 2-third row, left panel). In this vein,
the S = [4−6]Hz region within the L region is adopted,
defining more focused S region-related features.

• S Region BS-related Features

1) Relative Power (Power46(%)) of BS at S and L
regions, i.e.:

Power46 =

∑
fm∈S

∑
fn∈S |BS(fm, fn)|∑

fm∈L
∑

fn∈L |BS(fm, fn)|
. (13)

2) Belongs at S (belongs46): This feature describes
whether the majority of the BS density of a process
belongs at the S interval. Takes only binary values,
that is, 1 if the dominant peak of the BS domain is
located at S band, and 0 otherwise.

2) CLASSIFICATION SCHEME
To assess the predictive ability of the introduced features
in a supervised classification setting, a Leave-One-Subject-
Out (LOSO) scheme was adopted, accounting for model
hyper-parameter optimization and overfitting avoidance.
Inside each LOSO loop, a standardization scaling is applied,
followed by the ANOVA feature selection method, where
the k best features are kept in each loop. For the proposed
classification methodology, four types of classifiers are
utilized, i.e., Gaussian Kernel Support Vector Machine
(RBF-SVM), Linear Support-VectorMachine [37], k-Nearest
Neighbors [38] and Logistic Regression [39]. This procedure
is repeated for 100 different random states. The Receiver
Operating Characteristics (ROC) Curve [40] and the area
under the ROC curve (AUC), as well as the Accuracy metric
were used to evaluate all subjects against tremor level, and
Sensitivity/Specificity values were calculated for all cases.

IV. EXPERIMENTAL AND IMPLEMENTATION ISSUES
A. DATASET CHARACTERISTICS
The dataset used in this work is drawn from the work of
Beuter et al. [8]. This dataset includes signals recorded
from 16 subjects diagnosed with PD. The average±standard
deviation of the age per class is HAT: 58.5 ± 9.78yrs; LAT:
52.7 ± 10.19yrs, and for both {HAT, LAT}: 56.6 ± 10.1yrs.
No statistically significant difference exists for the age and
sex factors across the two classes (two-sided Wilcoxon
signed rank test p = 0.328; p = 0.987, respectively).
On the contrary, as expected, a clear statistically significant
difference exists for theMDS-UPDRS-III rest tremor subitem
factor across the two classes (two-sidedWilcoxon signed rank
test p = 0.0156). As it is described in [8], all PD patients were
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TABLE 1. Patients’ demographics and their DBS/PD-related information
[8]. M: Male; F: Female, GPi: Globus Pallidus Internus region; Vim:
Ventralis intermediate nucleus region; STN: Subthalamic Nucleus.

receiving DBS to alleviate PD symptoms. During the tremor
recordings, all patients had to be in the ‘‘off’’ condition, i.e.,
without any effect from medication (dopaminergic therapy,
L-Dopa) for at least 12 h before the recordings. A more
detailed description of the patients’ demographics and their
DBS/PD-related scores is given in Table 1. It should be
noted that the MDS-UPDRS-III rest tremor subitem scores
in Table 1 refer only to the ‘‘off’’ condition [8]. We adopt the
notation introduced in the original paper of Beuter et al. [8],
that desribes the following tremor conditions:

1) ‘ron’ condition (DBS ‘‘off’’, medication ‘‘on’’): After
refraining from medication at least for 12 hours,
participants took 150% of their morning dose of
L-Dopa.

2) ‘ref’ condition (DBS ‘‘on’’, medication ‘‘off’’): Partic-
ipants were recorded after refraining from medication
at least for 12 hours, with the stimulation being in the
‘‘on’’ state.

3) ‘off’ condition (DBS ‘‘off’’, medication ‘‘off’’): Partic-
ipants were recorded without the effect of medication
for at least 12 hours, after the DBS had been
ceased for at least 1 hour. During this hour, rest
tremor measurements were taken every 15 minutes
for 60s, starting immediately after DBS cessation,
resulting in 5 different ‘‘off’’ conditions, labeled as
‘rof’,’r15of’,’r30of’,’r45of’,’r60of’.

4) ‘ren’ condition (DBS ‘‘on’’, medication ‘‘on’’): The
recordings of this condition were taken after partici-
pants had taken their medication. Stimulation had been
in the ‘‘on’’ state for over an hour.

It should be noted that the time sequence according to which
the conditions were recorded is as listed above. As some

patients were experiencing discomfort, not all patients were
recorded in all conditions [8].

B. PREPROCESSING AND IMPLEMENTATION SETTINGS
All signals were recorded with a sampling frequency
of 100 Hz, and had approximately 60s duration. As some
signals had slightly longer duration, the first 60s from each
recording were used for the analysis. Pathological PD rest
tremor is thought to be located in the [4 - 6] Hz region [41].
Nonetheless, there are studies where the rest tremor band is
taken over a broader region, e.g. [3.5 - 7.5 Hz] [42], [4 -
8] Hz [43], whereas physiological tremor is identified in the
[8 - 12] Hz band [42]. In this vein, a FIR bandpass filter
([2.5 - 12]Hz) was first applied to the recordings, to remove
any noise originating from wrist or arm movements
(< 2.5Hz) or any high frequency noise (> 12Hz). Since we
have to deal with relatively low frequencies, a subsampling
to 50 Hz was applied to the signals to reduce the computa-
tional cost. All signals were finally standardized to mitigate
any effect due to amplitude variation.

In the process of BIC estimation (see (2)), values of P(f )
close to zero could createmany spurious peaks in the resulting
BIC. To account for this, usually a small constant ϵ is added
to the denominator of BIC [44]. In our case, the value of
ϵ = 10−7 was empirically selected, effectively eliminating
many spurious peaks, without causing any alterations in
the significant peaks of BIC. Moreover, to ensure that the
estimated BS peaks have statistical significance, surrogate
data sets that are explicitly Gaussian, linear, and share the
same second-order statistics with the original data were
produced. Estimation of the BS from the surrogate data
defines the threshold that can be used to evaluate the
significance of the BS peaks of the original data. Here we
followed the computational implementation of this procedure
based on [45]; the related hyperparameters were empirically
set as P = 100 and M = 100. For the calculation of BS and
BIC, the Higher-Order Spectral Analysis (HOSA) MATLAB
Toolbox was used [46].

C. PERFORMANCE EVALUATION SCENARIOS
In order to evaluate the performance of the proposed
approach, two specific evaluation scenarios were constructed,
including features evaluation and classification pathways,
as described below:

1) SCENARIO A
In this scenario, we aim to assess the various treatment
conditions of DBS and/or Medication and categorization into
LAT/HAT classes under treatment. To that end, we use the
‘ren’, ‘ref’, ‘ron’ and ‘rof’ conditions (48 recordings from
12 subjects in total), where all possible combinations of treat-
ment are involved (i.e., both DBS and medication, DBS only,
medication only, neither DBS nor medication). To examine
the effect of DBS,medication and tremor amplitude, we apply
a statistical analysis for feature characterization and design a
classification pathway, for each of these factors.
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Features evaluation: We use these 48 signals to test for
statistically significant differences between the proposed
features, utilizing as grouping variables, the presence of DBS,
the presence of medication and categorization into LAT/HAT
classes. Furthermore we test for statistical significance using
as grouping variables the presence of DBS and medication,
inside each amplitude tremor group. For feature characteriza-
tion in this scenario, we employ two different statistical tests.
The t-test is used as a parametric test, whereas to account for
the small sample size and deviations from Gaussianity, the
non-parametricWilcoxon rank sum test is used. The threshold
for the p-values to be statistically significant considered is set
to 5%. In a comparative process, we compare the proposed
features with those produced in [17], where Long-Term
Correlation (LTC)-based features, i.e., the Hurst Exponent
(H) and theMultiFractal Spectral Width (MFSW), along with
Welch PS, combined with Principal Component Analysis
(PCA) and kernel-PCA (kPCA)-based features are used.
Classification pathways: Three different classification

pathways are implemented, considering the presence of DBS,
the presence of medication and categorization into LAT/HAT
classes. For each classification pathway, we use only features
that were successfully evaluated at least in one statistical test
in the features evaluation step, as well as the binary NoPeaks
and belongs46 features. In the case where a condition does
not present any significant feature, all features are used for
feature selection. In order to enable a fair comparison of our
results with the ones in [17], the same procedure as in [17]
is followed in this scenario. In particular, only the RBF-SVM
classifier is used, in a simple non-nested LOSO scheme, and
the ROC curve AUC score (with the 95% CI), along with the
sensitivity/specificity metrics are estimated.

2) SCENARIO B
In this scenario, we aim to assess the categorization into
the LAT/HAT classes under treatment-free conditions. In this
vein, we use only recordings that belong to the ‘‘off’’ condi-
tions (i.e., ‘rof’,’r15of’,’r30of’,’r45of’,’r60of’), where there
is absence of treatment, and the tremor can be studied in its
purest form. To examine the tremor evolution in time, as well
as the time independent tremor characteristics, we separately
study each ‘‘off’’ condition and the grand average of the
five ‘‘off’’ conditions. In the latter case, data from only
11 subjects that participated in all 5 ‘‘off’’ conditions are
used. To that end, we apply a statistical analysis for feature
characterization and design a classification pathway, for each
of the six conditions (‘rof’,’r15of’,’r30of’,’r45of’,’r60of’,
grand average).
Features evaluation: In each of these six conditions, we test

for statistically significant differences between the features,
utilizing as grouping variable the categorization into the
LAT/HAT classes. The non-parametric Wilxocon rank sum
test is only employed here, due to the reduced the sample
size. The features evaluation process is further expanded
with a feature selection procedure, which takes place in the
classification scheme.

Classification pathways: Six different classification path-
ways are implemented, considering the categorization into
the LAT/HAT classes, as in the features evaluation procedure.
For each classification pathway, we evaluate subjects against
tremor amplitude level, using a LOSO scheme with nested
4-fold cross validation. We also insert an additional oversam-
pling step before the LOSO loop, where the initial subjects
are oversampled for the minority class, using the SMOTE
algorithm [47]. It should be noted that this oversampling
procedure does not take place in the ‘rof’,’r30of’ and ‘r60of’
conditions, where the HAT subjects to LAT subjects ratio is
6/8, 4/8, 4/8 respectively. However in the ‘r15of’ and ‘r45of’
conditions, this ratio drops to 3/8. As we employ a LOSO
scheme, there are certain folds where there is a big imbalance
between the classes, which is combined with the fact that in
such a case, the minority class contains only two subjects;
hence, this clearly could negatively affect the classification
results.

To maintain the integrity of the classification and,
simultaneously, counterbalance the aforementioned issue,
we oversampled with the SMOTE technique to a ratio of
4/8 for the ‘r15of’ and ‘r45of’ conditions, by generating an
artificial subject. All classifiers and all evaluation metrics of
the proposed methodology are applied in this scenario. For
computational implementation of the classification schemes,
the Scikit-Learn Python package is used [48].

V. RESULTS
A. SCENARIO A RESULTS
1) FEATURE CHARACTERIZATION
Table 2 tabulates the results from the features evaluation
in terms of the estimated p values (bold values denote
p < 0.05). From this table it is evident that all analyzed
features do not present any statistical power in the case of the
existence or not of DBS. As is also stated in [17], this result
contradicts the fact that DBS is commonly used for alleviation
of PD symptoms in clinical settings. However, some of them
yield statistically significant differences when the existence
or not of medication (Med On/Off) or tremor amplitude
(HAT/LAT) is used as grouping variable. This result applies
to both our HOS features and LTC-PS features. Taking into
account the use or not of medication, BS features, as well
as the Power46 feature, seem to perform effectively under
both t-test and rank-sum test, while BIC features provide
statistically significant differences only when considering the
t-test. LTC- and PS-based features also capture the effect
of medication. Considering the characterization of tremor
amplitude, we can conclude that HOS provide a higher
number of features that are significant at least in one test,
compared to the ones from LTC-PS. In addition, BicEnt1,
BspecEnt1, and BspecEnt2 perform effectively at both tests,
while for LTC-PS features only kPC1 appears significant in
both tests.

Figure 3 depicts the distribution of the statistically
significant features based on Table 2. In particular,
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TABLE 2. Scenario a feature characterization (1/2).

Figs. 3a and 3b illustrate the distribution of the {BicEnt1,
BspecEnt1, TotalArea, Power46} and {BicEnt1, BspecEnt1,
TotalArea} features for Med On/Off and HAT/LAT settings,
respectively. These features satisfy the condition of success-
fully meeting at least one statistical test (Table 2). In Fig. 3a
it is noted that the use of medication causes a dispersion
of the bispectral content. This effect is reflected both in
BspecEnt1 and TotalArea features. Moreover, the S Region
BS-based Power46 feature confirms the expected effect of
medication which is the decrease of power in the pathological
tremor band. Finally, it can be seen that the ‘‘Med On’’
condition of the BicEnt1 feature translates into higher values
of entropy in the BIC domain, indicating that more frequency
components interact nonlinearly, producing a more dispersed
spectrum. In Fig. 3b, the BicEnt1, BspecEnt2 and TotalArea
features exhibit higher values in LAT case. As mentioned
before, this translates into a more widespread content in the
bispectral domain for the LAT subjects, compared to HAT
ones.

Table 3 tabulates the results from the features evaluation in
terms of the estimated p values (bold values denote p < 0.05),

TABLE 3. Scenario a feature characterization (2/2).

by examining the differences of each amplitude tremor group
in medication and DBS settings. LAT subjects do not present
any differences, both in the DBS andMed groupings, whereas
in the latter, two statistically significant features are provided
by LTC-PS. This poor performance of the features in the
LAT group originates from the fact that LAT subjects are
considered to have low tremor severity, both in terms of
amplitude and MDS-UPDRS-III rest tremor subitem score
(Table 1). On the contrary, statistically significant differences
in features are seen for HAT subjects, both for DBS and
medication settings. HAT subjects are thought to have high
tremor severity, and thus DBS and Medication have a greater
effect in the HAT group. The most important result of Table 3
is that a meaningful characterization about the use of DBS
arises, contrasting the results of Table 2. More precisely, HAT
subjects manifest statistically significant differences when
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FIGURE 3. Visualization of HOS features under Med and DBS settings and amplitude tremor grouping. In subfigure 2a, HOS features accurately describe
differences between Med states. In subfigure 2b, Bicoherence and Bispectrum Entropies successfully separate the high and low amplitude tremor
groups. In subfigure 2c, Bicoherence features deliver a significant difference between DBS states in the HAT subjects cohort.

TABLE 4. Scenario a classification results.

the state of DBS is considered. This result is quite important,
since it is delivered only through HOS features, whereas
LTC and PS features cannot capture this difference. This
result is visualised in Figure 3c, where the distribution of
the statistically significant features, TotalBic and BicEnt2,
is highlighted. We can conclude that both the quantity of
the nonlinear interactions and the coupling strength of those
interactions, are increased when the DBS is in the ‘‘On’’
state. Taken altogether, statistically significant differences
that arise in Table 2 regarding DBS and medication settings,
are probably due to differences in the HAT class (Table 3).

2) CLASSIFICATION
Table 4 tabulates the best classification results (AUC
(95% CI), Sensitivity/Specificity) generated by the proposed
HOS-based approach and compares them directly to those
from [17]. As it can be seen from Table 4, our method-
ology provides significantly better results than the LTC-PS
approach in all problems considered. Regarding the Med
On/Off case, we observe that HOS-based features achieve
an almost perfect discrimination, which is expected since
medication strongly affects nonlinear properties, as was
indicated by the feature characterization (Table 2, Table 3).
In the DBS On/Off case, an expected decline in perfor-
mance occurs compared to Med On/Off, confirming that
medication is more effective in suppressing rest tremor.
Finally, our methodology delivers a satisfactory performance

in predicting amplitude level. This result is quite important,
since it shows that through HOS-based features, tremor
severity can be predicted, even when suppressing factors, like
DBS and medication, are on effect.

Figure 4 shows the selection percentage of the k best
selected features yielded by the feature selection procedure,
where k represents the feature dimension used in each classi-
fication setting as presented in Table 4. In the Med On/Off
setting, the BS-based features noPeaks, BspecEnt1 and
the S Region BS-based Power46 feature have a selection
percentage of 100%, while BspecEnt2 and maxArea are
selected as frequently as 70% and 20% of the cases,
respectively. Furthermore in the HAT/LAT classification,
BS-based features BspecEnt1, BspecEnt2 and BIC-based
feature BicEnt1 are always selected, while the BS-based fea-
ture noPeaks has a selection percentage of 85%. Finally, in the
DBS On/Off setting, BIC-based feature BicEnt2 appears in
100% of the cases, while the BS-based ESR and BIC-based
BicEnt1 are selected almost 100% of the cases.

B. SCENARIO B RESULTS
1) FEATURE CHARACTERIZATION
In Table 5, the statistical significance of the proposed
HOS-based features, as well as their selection percentage,
when the k = 8 best features are considered, are tabulated.
This percentage is taken over 100 iterations of the LOSO
cross-validation process. It is worth noting that some features
provide information only for certain ‘‘off’’ conditions.
This observation implies that the phenomenon that occurs
after cessation of DBS and in the absence of medication,
is dynamical in nature, and each ‘‘off’’ condition has its
own properties. The time evolution of this phenomenon
delivered through the recordings under ‘‘off’’ conditions is
further analyzed in the next section. Nevertheless, the fact that
features like BS and BIC entropy provide predictive power in
all ‘‘off’’ settings, highlights even more the value of HOS-
based analysis.
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FIGURE 4. Scenario A Feature Selection Results: Percentage of times each
feature is selected in each classification setting, for the corresponding
feature vector dimension, as presented in Table 4.

TABLE 5. Scenario B: selection percentage and statistical significance of
HOS features.

2) CLASSIFICATION
Table 6 presents the classification results under the
Scenario B. More specifically, Table 6 tabulates the Accu-
racy, AUC and Sensitivity/Specificity scores, along with the
95% CI where applicable, for the three classifiers, at each
‘‘off’’ condition, along with the grand average case. It is evi-
dent that HOS-based features provide a robust classification
with steady performance in the ‘‘off’’ conditions, as well as
in the grand average problem. Observing the accuracy scores,
it can be seen that in all conditions and all three classifiers,
an average of one subject is misclassified, with the exception
of the kNN classifier in the grand average scheme, where
in some random states two subjects are misclassified. After
inspection of the results, we noticed that the subject that
is misclassified in all six problems, is the s16 individual.
To further investigate this phenomenon, an unsupervised
clustering analysis was applied to discover hidden patterns
in the data, that might explain this misclassification. This
analysis is presented and discussed in the succeeding
section.

TABLE 6. Scenario B classification results. The 95% CI was less than
0.02 in all cases.

VI. DISCUSSION
A novel HOS-based approach towards the understanding
of the PD rest-tremor characteristics has been attempted,
taking into consideration two commonly used methods for
PD rest tremor alleviation, i.e., the DBS and the L-Dopa
medication. From the presented results it is derived that
HOS-based features are capable of efficiently discriminating
between the LAT and HAT classes. In the examined
Scenario A, we utilized statistical tests and revealed how
medication and DBS affect the tremor producing system.
This effect is much more prominent in the HAT group.
In addition, an increase in the number and strength of
nonlinear interactions was observed through BIC features,
in the HAT group during the DBS ‘‘On’’ setting. HOS-related
features also yielded significant discrimination when tremor
amplitude (LAT/HAT) was considered.

Comparing the findings of the proposed HOS-based
analysis with the ones based on LTC-PS introduced in
[17], it is evident that the HOS-based features allow
for more consistent discrimination between the examined
classes, providing further new insights about the effect of
DBS on the tremor production system. It should be noted
though, that HOS analysis failed to detect the effect of
Medication in the LAT cohort. However, in Scenario A, our
HOS-based features outperformed LTC-PS representations
in all categories, and indicated the influence of medication
on nonlinear properties, and the superiority of medication
over DBS. A significant performance was observed in tremor
amplitude level prediction through HOS-based features, even
when medication and DBS were on effect.

In Scenario B, we investigated further the predictive
ability of our HOS-based analysis on tremor amplitude, and
implemented a nested LOSO classification scheme focused
on the ‘‘off’’ conditions. The performance of the classifiers
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used, reached an accuracy score of 0.93 in the ‘rof’ condition
and a ROC AUC score of 1 in the ‘r45of’ and Grand Average
cases. Moreover, the classification performance remained
high, irrespectively of the time passed after the termination
of DBS process.

A. UNSUPERVISED NONLINEARITY-BASED
CHARACTERIZATION
Asmentioned earlier, in all examined classification problems,
a certain individual was misclassified. In order to analyze
this behavior and examine PD rest tremor properties from a
new perspective, we implemented an unsupervised clustering
analysis. The absence of the class information that character-
izes this analysis, could contribute to a better understanding
of rest tremor, as projected in the HOS domain. Since
the signals were standardized during the feature extraction
procedure, it is expected that the amplitude factor of a
signal will not have significant contribution to the BS and
BIC characteristics. Instead, it is interesting to see if new,
nonlinearity-based classes can arise from the bi-frequency
domain. To that end, we performed a clustering using the
K-Means algorithm with a multiplicative penalty scheme
on the mean value of the Silhouette metric, to determine
the optimal number of clusters ranging from two to six
clusters [49]. The best clustering was found by searching over
100 random states for the initialization of the centroids of the
K-Means algorithm.

In Table 7, the clustering results are presented. The
resulting new class of each subject is noted for each ‘‘off’’
condition, and a comparison with the HAT/LAT classes is
also made through the Simple Matching Coefficient (SMC),
while the performance of the clustering is evaluated through
the mean Silhouette score. The SMC ranges from 0 to 1,
corresponding to zero similarity and perfect similarity,
respectively. The Silhouette score measures the similarity of
an observation with its own cluster (cohesion), compared to
other clusters (separation). The Silhouette ranges from −1 to
+1, where a high value translates into a sample that matches
well its own cluster and at the same time poorly matches
other clusters. As it can be seen from the results tabulated
in Table 7, the estimated SMC takes high values and we
can conclude that the tremor amplitude characteristics are
related to the bi-frequency derived characteristics. Moreover,
it is evident that the mean Silhouette score indicates a good
clustering performance in all conditions.

Moreover, Table 7 indicates that the optimal number of
clusters is two, in all cases. Another important outcome
is that the s16 subject that previously was an outlier for
the LAT class, here joins the HAT group (class ‘‘1’’).
It should be noted that the initial class of the s16 subject
(LAT), is well defined by the clinicians that performed the
experiment [8]. However, the adoption of the classification
metrics from the nonlinear space, could shed more light upon
the rethinking of the classification process, instead of solely
relying on the commonly used approaches of amplitude
and frequency-based representations, of the tremor signal.

TABLE 7. Clustering results.

Perhaps, consideration of the tremor signal representation at
the HOS domain, could provide insights that ameliorate any
propensity for misclassification.

Table 8 provides an illustrative and explanatory descrip-
tion of the new classes, by presenting values of some
representative features in the Grand Average case of the
‘‘off’’ conditions. Subjects that belong in class ‘‘1’’, are
characterized by low values of Bispectral and Bicoherence
Entropy, which, in fact indicate, a smaller quantity of
nonlinear interactions, compared to subjects of the class
‘‘0’’. This conclusion is reinforced by the Total Bicoherence
values, where class ‘‘1’’ subjects present lower BIC values,
and, hence, reduced quadratic coupling strength of nonlinear
interactions. Power46, which constitutes a feature that
represents the physiology of tremor and has higher practical
interpretability, gets very high values in the case of class
‘‘1’’. The behavior of the Power46 feature regarding the new
classes, matches quite well to the other three features that
describe nonlinear interactions. This is an important finding,
since it points out that nonlinearity is a fundamental property
of PD rest tremor. Based on the aforementioned observations,
wemove forward and define the classes ‘‘1’’ and ‘‘0’’, as Low
nonLinearity System (LnLS) and High nonLinearity System
(HnLS), respectively. These new classes are more connected
with the nonlinear behavior of the tremor production
system, rather than the amplitude/frequency characteristics
of the tremor signal itself. Such a characterization is quite
important, as it reveals a new perspective in approaching
PD rest tremor, which cannot be captured with conventional
approaches that solely examine amplitude and frequency
characteristics.

Previous literature is indicative of tremor signatures that
are referred to in general terms as ‘‘nonlinear’’, regarding
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TABLE 8. Grand average of feature values for each subject in the ‘‘Off’’
conditions.

untreated tremor and tremor during medication and DBS
effect. Timmer et al. used nonlinear dynamics and claimed
that tremor signals are indeed nonlinear oscillations and not
strictly periodic, in fact possessing nonlinear second order
stochastic dynamics [50]. Sadeghi Razlighi et al. examined
the effect of different DBS settings on PD tremor properties
through nonlinear dynamics and found that tremor exhibited
chaotic behaviors, and that these behaviors changed with
alteration of DBS voltage settings [51]. Finally, Sarbaz et al.
provided very interesting results on the same dataset that we
use here [8], regarding the nature of PD rest tremor through
nonlinear analysis; they characterized untreated tremor as
chaotic, whereas they noted that effective treatment changes
this behavior towards a more stochastic manifestation,
thereby weakening chaos [35].

As our insights stem from the conditions where treatment
is in the ‘‘off’’ states, we can attempt a matching with
the insights from Sarbaz and Pourakbari, that characterized
these states as chaotic. Moreover severity of the disease
increases chaotic behavior [35]. In our case, severity of
the disease is measured by the MDS-UPDRS-III tremor
subitem, which is generally higher in the HAT subjects (see
Table1), that mostly make up the LnLS class. Therefore,
severity of the disease in nonlinear terms (LnLS class)
could have some relation to the chaotic behavior described
by Sarbaz and Pourakbari, whereas the HnLS class could
tend to a more stochastic behavior. These assumptions
are supported by the nonlinear measures Higuchi Fractal
Dimension and Approximate Entropy, which had lower and
higher values, therefore lower/higher nonlinearity, in the
chaotic and stochastic states, respectively [35], as in the
LnLS/HnLS classes. Although we cannot make conclusions
on the relation of our nonlinearity insights to the chaotic and
stochastic insights of Sarbaz et al., it is worth commenting on
the similarity of our theories, which should be addressed in
future research efforts.

B. DYNAMIC EVALUATION OF TREMOR PROPERTIES
So far, the various conditions have been independently
examined from each other. In a step further, it is interesting to

examine if the proposed HOS-based features can accurately
describe the dynamic change of tremor properties over the
time course of the two-day experiment, where medication
and DBS conditions alternate between the ‘‘On’’ and ‘‘Off’’
states. Results from this dynamic analysis are shown in
Figure 5, where the most representative HOS-based features
are displayed under the available experimental conditions,
as they change over time, in the LnLS subject cohort. To begin
with, the superiority of medication over DBS is depicted
in the Power46 and BS and BIC Entropy features. Lower
power and higher entropy values are observed in the Med
‘‘On’’ - DBS ‘‘Off’’ condition compared to the Med ‘‘Off’’ -
DBS ‘‘On’’ condition. After the DBS is turned off, a gradual
deterioration is observed, reaching its peak 15 minutes later,
as was also reported in [8]. 30 minutes after DBS was
stopped, a rebound of the DBS effect occurs, followed again
by a gradual aggravation until 60 minutes. This behavior
after DBS cessation has been previously examined by other
studies, and seems to be varying depending on subject
condition and study protocol. In [52], where the essential
tremor is studied, a rebound of tremor is observed two
minutes after the DBS closure, declining until 30 minutes,
when it then disappears. Hence, it could be possible that the
condition that is described in 15 minutes, was more intense a
few minutes earlier. In [53], the essential tremor rebound is
reported at approximately eightminutes after DBSwas turned
off. Therefore, it is not safe to draw general conclusions
about the exact behavior of tremor after DBS is switched
off. Nevertheless, it is certain that ‘‘off’’ conditions have
distinct differences with the other conditions. In contrast
to the other features, Total Bicoherence indicates that the
effect of DBS is stronger than the effect of Medication,
since the DBS ‘‘On’’ - Med ‘‘Off’’ condition has the greater
separation, when compared to the ‘‘Off’’ conditions. This
might seem strange; however, it is confirmed in Table 3
from the p-values in the DBS ‘‘On/Off’’ test for the HAT
group, where a significant p-value occurred when the Total
Bicoherence was considered. This, combined to the fact that
Bicoherence Entropy remains lower in the DBS ‘‘On’’ - Med
‘‘Off’’ condition, is another indication that DBS increases the
coupling strength of nonlinear interactions. It should also be
noted that we chose to demonstrate these results for the LnLS
class only, where the tremor severity is at its highest. Such a
decision is justified by the fact that in this approach we handle
only HOS-based features, so studying the LnLS class seems
more suitable than the HAT class.

From this dynamic perspective of the PD rest tremor, it can
be concluded that HOS-based features deliver a compact
description of the sequence of conditions recorded in this
dataset, and provide variables that can be used as biomarkers
for real time assessment of PD severity and behavior.
Moreover the results of the scenarios examined in this study,
indicate that HOS possess high sensitivity in discriminating
the effect of medication and DBS. Thus, HOS could
be appropriate for incorporation in an adaptive treatment
system, where medication dosage and DBS parameters are
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FIGURE 5. Evolution over time of (a) BspecEnt1 and BicEnt1 and (b) TotalBic and Power46, for all LnLS subjects. The blue line represents the mean value
across LnLS subjects feature values. The red dashed line represents the 95% Confidence Interval of the mean, calculated over 100 bootstrap iterations.

dynamically adjusted, according to PD tremor condition.
It is also important to note that the LnLS and HnLS classes
introduced here, should not be considered as a replacement,
but as a complement to the HAT/LAT classes.

C. COMPARISON WITH PREVIOUS WORKS
A comparison of HOS-based approach to previous studies
conducted on the same dataset, highlights the superiority
and the comprehensiveness of our analysis. Specifically,
when comparing the classification results for scenario A to
those from [17], we observe improvements of 9%, 19%,
and 22% for the Med On/Off, DBS On/Off, and HAT/LAT
classification tasks, respectively. Furthermore, in scenario B,
our classification results can be directly compared to those
in [36], where the goal was to distinguish between HAT and
LAT patients using recordings from the ‘rof’ condition.While
their classification results match ours (misclassification of
one subject in both cases), the absence of classification
results during the rest ‘off’ states (‘r15of’, ‘r30of’, ‘r45of’,
‘r60of’) and in states where medication and/or DBS are still
active, hinders a thorough comparison. Finally, in [35], it was
demonstrated that effective treatments (DBS and medication)
lead to more noticeable stochastic behavior. While direct
comparisons between our approaches are challenging due to
methodological differences, this enhancement of stochastic
behavior in the presence of treatment may be related to the
increased nonlinearity observed in our study.

D. LIMITATIONS
Despite the promising results of the proposed approach, some
limitations could be identified. In particular, the number
of cases examined in both Scenarios can be considered
small. However, in order to reduce the effect of the small
sample size to the generalization power of the findings, the
feature characterization was carried out with two different
statistical tests that account for such limitation, whereas, in all
classification settings, a LOSO scheme was implemented.

Moreover, in Scenario A, only the statistically significant
features enter the classification pipeline. We also believe that
the potential of the new tremor classes that are introduced
here could be further reinforced in a larger subject cohort.
Moreover, the ‘‘off’’ conditions available in this dataset are
recorded with a time distance of 15 minutes between each
other. However, when tremor level changes are considered,
this time interval is quite large. As previously mentioned,
other studies [52], [53], have examined tremor behavior after
DBS cessation with much smaller time step than the one
available here. Apparently, examination of the HOS-based
features under various time steps between various conditions
could lead to more conclusive results regarding their ability
to clearly capture the dynamic behavior of PD tremor
before and after DBS and medication treatment. Research
efforts to further address such limitations have already been
undertaken.

VII. CONCLUSION
Parkinsonian Rest Tremor characterization and identification
under different treatment conditions has been presented
here, by involving, for the first time, features from the
Higher-Order Spectra domain. When this approach was
applied to experimental data with different PD tremor
amplitude/frequency characteristics and under various treat-
ment conditions, new insights and discrimination poten-
tialities were identified. Specifically, HOS-based features
responded with high classification performance that out-
performed existing methods applied to the same dataset,
in two different analysis scenarios; in Scenario A, three
classification problems to examine the effect of DBS
and dopaminergic treatment were addressed, whereas in
Scenario B six different classification problems related to
tremor in untreated conditions were solved. Through these
results, our proposed approach manages to connect the
clinically valid amplitude/frequency classes of LAT/HAT
to identification insights regarding differentiation in treated
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and untreated tremor states. Most importantly, the proposed
HOS-based approach introduced an additional perspective in
PD resting tremor analysis via the revelation of nonlinear
behavior as quantitatively expressed in the HOS-based
features. This can allow rethinking of the classification
metrics and can reveal transitions between various degrees
of nonlinearity, when alternating between different treatment
conditions; hence, a more efficient evaluation of the DBS
and/or Medication effect on PD tremor characteristics can
be accomplished. Future applications can examine the
possibility of incorporating HOS-based nonlinear biomarkers
as inputs to smart AI-powered wearable technologies to
capitalize on their explainability and sensitivity of PD tremor
properties.
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